Link Files Across Projects

VS.NET makes it easy for multiple-project solutions to share solution-wide attributes.

o VB.NET

o C#

(2 SQL Server 2000
o ASP.NET

a1 XML

1 VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these resources.

Download

VS03090A Download the code for
this article, which includes a linked-
files demo, a WinForms custom-
control icon, and an About box
demo.

Discuss

VS03090QA_D Discuss this article in
the .NET Framework / IDE forum.
Read More

VS0309QA_T Read this article
online.

VS0307QA_T Q&A, “Implement an
ASP.NET Back Control,” by Juval
Lowy

VS0210BB_T Black Belt, “Generate

Assemblies With Reflection Emit,”
by Randy Holloway

VS02060A T 0&A, “Develop Rich-
Ul Apps,” by Karl E. Peterson and
Juval Léwy

58

by Juval Lowy and Fabio Claudio Ferracchiati

s Link Files Across
Projects
I have a solution with many projects, and I want
all the projects to share the same version number
and strong-name keys file. How can [do this

without duplicating the Assemblylnfo file?

A:

Every NET project you create with
VS.NET contains a file called
Assemblylnfo.cs (or Assemblyln-
fo.vb), which includes assembly-
wideartributes, such as version num-
ber, strong-name keys filename, as-

sembly title, and culture. Although Eassemglw
: assembly:

you can place these atfrlbutes any- asiin
where in your source files, the con- e
vention is to put them all in the [assembly:
F .

Assemblylnfo file, so you have a [assembly:
[assembly:

centralized, known place for them.
The convention is also to avoid
placing any code in the Assem-
blylnfo file. This works fine for a
single project, but you often want
all projects in a solution that has
multiple projects to share the same
version number and strong name,
as well as other solution-wide at-
tributes. If you have one Assembly-
Info per project, you must update
all these files manually on every
change. Fortunately, you have an
casy solution to this problem:
VS.NETs little-known ability to
link files across projects.
Forexample, consider the sample
MyApp solution, which contains two

class libraries (ClassLibrary] and ClassLibrary2)
and a client project (MyClient) that uses these
libraries (download the source code from the
VSM Web site; see the Go Online box for details).
You can factor the solution-wide attribute into a
SolutionInfo.cs file (see Listing 1). The Solution-
Info.cs file contains the solution-wide version
number, the company’s name and copyright
notice, and the strong-name keys filename. Place

p

D

C# e Link All Projects

using Sys
using Sys

tem.Reflection;
tem.Runtime.CompilerServices;

AssemblyCompany("My Company")]
AssemblyProduct{ "My Product")]
AssemblyCopyright{"(c) My Company")]
AssemblyVersion{("1.0.*")]
AssemblyDelaySian(false)]
AssemblyKeyFile(@". .\, .\..\MyApp.snk")]
AssemblyKeyName("")]

Listing 1 The SolutionInfo.cs file contains solution-wide in-
formation, such as the name of the strong-name keys file,

information

about the company and products, and version

number. All projects in the solution must link to this file.

p

‘\

C# = Edit Assembly Information

using Sy
using Sy

[assemb]
[assembl]
[assembl
[assembl
[assemb]l

stem.Reflectian;
stem.Runtime.CompilerServices;

y: AssemblyTitle("")]

y: AssemblyDescription("")]
y: AssemblyConfiguration("")]
y: AssemblyTrademark("")]

yi AssemblyCulture(*")]

Listing 2 The Assemblylnfo.cs file contains project-specific

information,

such as the assembly name, description, and lo-

cale. You provide version and strong-name information by link-
ing to the Solutioninfo.cs file.

VISUAL STUDIO MAGAZINE

SEPTEMBER 2003 + www.visualstudiomagazine.com

Add Existing Item - ClassLibrary

] UinkedFilesDemo

Figure 1 Add a Link to a File. When you link to a file, VS.NET merely adds a link to that file
from the project and avoids copying the file itself. VS.NET still takes the information in the
linked file into account when you build the project.

this file in the solution’s root. Add it to the
solution by right-clicking on the solution,
selecting Add | Add Existing Item... from
the context menu, then selecting Solu-
tionInfo.cs and Open.

VS.NET creates a new folder in the solu-
tion called Solution Items and places the
SolutionInfo.cs file in it. Next, edit each
project’s AssemblyInfo.cs file so that it con-
tains only project-specificattributes, such as
assembly title, description, and culture (see
Listing 2). Finally, you must link each project
to SolutionInfo.cs. Select Add | Add Exist-
ing Item... from one project’s popup con-
text menu. Browse to the project’s root and
highlight the SolutionInfo.cs file. Don’t
double-click on it, because doing so simply
makes a copy of the file and adds it to the
project. Instead, click on the dropdown
arrow to the right of the Open button and
select Link File (see Figure 1). This adds a
link to the SolutionInfo.cs file from the
project. The code in a linked file is part of
the project, but the file itself isn’t. Repeat
this process for the remaining projects (see
Figure 2 for the end result). Note the short-
cut icon in the three projects to the linked
SolutionInfo.cs file. —/.Z.

¢+ Display a Custom
Control Icon
How do I add an icon to a custom control
~ and make the toolbox display it when I add
the control to the toolbox?

VISUAL STUDIO MAGAZINE + SEPTEMBER 2003

. WWWLE

A:
WinForms and ASP.NET both allow you to
develop custom controls that you can add to
the toolbox. VS.NET assigns an icon to a
custom control if you don’t provide it your-
self. However, you should provide your own
icons, because the default icon is generic and
meaningless. Create the icon first; it must be
a BMP file, 16-by-16 pixels in size. The color
of the lower-left pixel is the transparent back-
ground color; forexample, if you set this pixel
to white, all white pixels in the icon are
transparent and show the toolbox’s gray un-
derneath. Add the icon to the project, then
bring up its properties. Set the Build Action
to Embedded Resource, so that the control’s
class library contains the icon, rather than
shipping it in a separate file (see Figure 3).

You can indicate to VS.NET which icon
to associate with a control in two ways:
implicitly and explicitly. You assign the icon
implicitly by naming it exactly the same as
the control and putting it in the project’s
root. For example, if the custom control is
called MyControl, name the icon My-
Control.bmp (download the sample code).
Now, when you add the control to the
toolbox, VS.NET displays MyControl.bmp
as the control’s icon. Implicit assignment
also requires the custom control to be in the
project’s default namespace.

Explicit assignment relies on the Tool-
boxBitmap attribute. ToolboxBitmap hasa

di ine.com

- (&3] References
Assemblylnfo.cs
..... Clazsl.cs
P Solutionlnfo.cs
1= (B ClassLibrary2
- B References
Agsemblylnfo.cs
----- Classl.cs
: @ Solutioninfo.cs
| = (8 MyClient
- (i8] References

Tl

i BB Foml.cs
| - Solutionlnfa.cs
| = S8 Solution ltems
b Solutionlnfo.cs

Figure 2 Link Multiple Projects. All projects
in this solution link to the SolutionInfo.cs file,
which contains solution-wide attributes and
resides in the Solution |tems folder. Every
project has a dedicated Assemblylnfo.cs file,
with project-specific attributes.

number of overloaded constructors, and the
one you choose depends on the way you
want to bind to the icon. You can indicate
which assembly the icon resides in, and you
can provide the icon filename. For example,
this version of the ToolBoxBitmap con-
structoraccepts the name of the file contain-
ing the icon, and the assembly where the
icon is embedded as a resource:

[ToolboxBitmap(typeof(MyControl),

"Mylcon.bmp")]
public class MyControl
[]

: UserControl

You indicate the assembly by providing any
type from it. If the embedded resource is in
the same assembly as the control (as is often
the case), you can simply provide the type of
the custom control itself. If you provide
only a type (indicating the assembly where
the icon is embedded), then VS.NET looks
in that assembly for an icon named the same
as the control:

[ToolboxBitmap(typeof(MyControl)]
public class MyControl : UserControl

(s

59

Be aware that VS.NET suffixes the embedded resource with the
assembly’s default namespace. As longas the custom control is in the
default namespace, the icon file’s name can be any name of your
choosing. For example, if the default namespace is CustomControls,
then this definition of the custom control can use the name
Mylcon.bmp as-is:

namespace CustomControls
i
[ToolboxBitmap(typeof(MyContraoll,
"MyIcon,bmp")]

public class MyControl : UserControl

 code in a linked file
the file itself isn‘t.

However, if you place the control in a different namespace in the
assembly, such as the nested namespace MoreControls, then you

* must name the icon file MoreControls.Mylcon.bmp:

namespace CustomControls
{
namespace MoreControls
{
[ToolboxBitmap(typeof{MyControl),
"MyIcon.bmp"}]
public class MyControl :
UserCantrol
fase)

This is the case even if you reference the icon as Mylcon.bmp in the
ToolboxBitmap attribute. —/. L.

« Create a Dynamic About Box

I'd like to develop an About box for my .NET application that
retrieves information directly from the Assemblylnfo file. How can
I do this?

A:

The .NET Framework provides some classes within the Reflection
namespace that you can use to analyze assembly characteristics
during application run time (download the sample code). You
should understand first what happens when you execute a .NET
application. The Common Language Runtime (CLR) module uses
the manifest data within the assembly to find out which other

assemblies must be executed. The CLR checks for the references to
external assemblies you added during the development phase and
loads the related libraries in memory. The CLR checks for each
library’s version and allows so-called “side-by-side” assembly execu-
tion—the possibility of having more than one version of the same
assembly running both in memory and on the hard disk. You can use
the Reflection namespace’s classes to emulate the CLR’s behavior
and inspect an assembly at run time,

The compiler injects the information you add with the <Assem-
bly> attribute into the assembly’s manifest. (If you use VS.NET to
build your application, you can find this information in the
Assemblylnfo file.) You should use the Reflection namespace classes
to read the information within the manifest. The first class to use is
the Assembly class. [t provides many useful shared methods, such as
GetExecutingAssembly:

Dim asm As [Assembly] = [Assembly].GetExecutingAssembly()

The GetExecutingAssembly method retrieves a reference to the
assembly that the current code—the application—is running from.
The Assembly class contains many methods you can use to inspect
the assembly at run time. I'll show you two methods for retrieving
information from the manifest: GetCustomArtriburesand GetName.
GetCustomAttributes retrieves an array of Object data types where
the attributes are stored in the assembly. You can go through each
object the method retrieves to search for the attribute you need.
GetName retrieves a reference to the AssemblyName class, which
contains useful properties such as the assembly version.

This code retrieves an array of Object objects filled with the
attributes specified in the manifest:

attributes = asm.GetCustomAttributes(True)

Mylcon.bmp File Properties

{ Bui on Embedded Resource
CustomTool

ustom Taol Namespace| Compile

S C t=dded Fesource

63 Sclution Explorer | .

Figure 3 Embed a Resource. \When you assign an icon to a custom
control, you can set the Build Action on the bitmap file to Embedded
Resource. This causes VS.NET to embed the file in the assembly, so
you don't need to ship the icon along with the binary file that con-
tains the control.

0 VISUAL STUDIO MAGAZINE + SEPTEMBER 2003 + www,visualstudi F———

You can use a Select Case statement to retrieve only some of them:

For Each attr In attributes
Select Case attr.GetType().ToString()

QA

guages and has written books for Wrox Press about this technology.
He works in Rome for the CPl Progetti SpA company
(www.cpiprogetti.it). Contact him at ferracchiati@rocketmail.com.

Case "System.Reflection." & _
"AssemblyTitlesttribute”
dlgAbout.Text = CTypelatir, _

AssemblyTitleAttribute).Title

Case "System.Reflection." & _

"AssemblyDescriptionAttribute"

dlgAbout.lbDescription.Text = _
CType(attr, _
AssemblyDescriptionAttribute _

End Select

Next

The preceding code uses the GetType
method to retrieve the current Object’s
type. You can use the ToString method to
check the Object’s type by comparing it to
another string containing the attribute
name and its namespace. After you find the
right attribute, you use the CType func-
tion to convert the generic Object typeinto
the specific attribute type. Once you've
retrieved the right type, you can access the
properties to retrieve the Tite and the
Description attributes and set the label text
in the About box.

The AssemblyName class contains the
Version property, which retrieves the Assem-
blyVersion attribute specified in the assem-
bly’s manifest:

Mol oasmy L

dlgAbout.1bVersion.Text += "
GetName().Version.ToString()

Thanks to the Assembly class’s GetName
method, you can obrain a reference to an
object of the AssemblyName class and re-
trieve the assembly version. —F F. vsm

Juval Lowy is a software architect and the
principal of |Design, a consulting and training
company focused on .NET design and .NET
migration. Juval is Microsoft's regional direc-
tor for the Silicon Valley, working with Micro-
soft on helping the industry adopt .NET. His
latest book is Programming .NET Compo-
nents (O'Reilly & Associates). Juval speaks
frequently at software-development confer-
ences. Contact him at www.idesign.net.
Fabio Claudio Ferracchiati has 10 years
of experience using Microsoft technologies.
He's been focusing attention recently on the
new .NET Framework architecture and lan-

VISUAL STUDIO MAGAZINE + SEFTEMBER 2003

Additional Resources

Programming .NET Components by Juval Lowy [0'Reilly &
Associates, 2003, ISBN: 0596003471]

Show Your Sharper Edge

NorthWind Products

GQuantityParUnit Prica| In Stack 0On Order| Reordsriavel Discontin...| &}

Categorylame ProductName
[E] Category : Boverages
ElCategory ; Candiments
Condiments Anisasd Syrup 12 - 550 ml botties $10.00 13 70 25 (]
Condimants Chaf Anton's Cajun Seasoning 48 - 6 oz jars $22.00 53 o a O
T35 b 0

Cendiments Genan Shouyu 24 - 250 m| bottles $15.50 25

o
Cond Grandma's berry Spread 12 - 6 or jars $25.00 120 o 25
Condiments Gula Malacca 20 - 2 kg bags $15.45 27 [15
Cendiments Loulsiana Fiery Hot Pepper Saucs 32 - B or bottles §21.08 ki o 1]
Cendiments Levisiana Hot Spiced Okra 24 - 8 oz jars $17.00 4 100 20
Condiments Northwoods Cranberry Ssuce 12 - 12 oz jars $4000 & o 1]
Condiments Original Frankfurter griine Sofie 12 boxes $13,00 Tz a 6 |
Condiments Sirop d'drable 24 - 500 mi bottles $28.50 113 o 25
Caondimants Vegle-spraad 15 - 625 g jars $43.50 4 0 5 |
Units on order: Anisead Syrup, Loulsiana Hot Spiced Okra
Sl Categery | Confections

Confactions Chacolada 10 pkgs. $1275_ 15 70 25 [
Confactions Gumbar h 100 - 250 g hags L R T 0 [
Confections Maxilabky 24 - 50 g plgs. $20.00 10 &0 15
Confections NubuCa Nul-Mougat-Creme 20 - 450 g glassas $14.00 76 o 3a)
Confactions Paviova 32 - 800 g boxas §17.48 29 [] 10 Ll
Confections Schoggl Schokalade 100 - 100 g piecas $43.90 49 (] 30 Cl
Cenfections Scottish Langbreads 10 boxes x @ pieces §12,50] 10 15 O

A S e T n G

Sweet and savory sauces, relishes eads, and seasqal

Nama: Chaf Anton's Gumbo Mix
Par Unit: 36 boxras
Prica: £21.35

* ADO, DAQ Data Binding
* Unbound mode: Event driven or using interfaces

Variety of cell edits types: single and multi-line edit box, action button,
check box and combo box

Supports Alpha blending and gradient fills

Implements a stage driven, custom draw mode you can intercept and
replace one or more stages in control’s paint cycle

* Data highlighting using styles

* Odd-Even rows highlighting

* Preview panel allows you to show contents of one column inside the
preview pane

Single or multiple column sorting

Outlock style grouping and Group Calculations: Users can select one or
more columns and group rows based on values in selected columns

* Frozen Rows and Columns

* Supports Print and Print Preview using Data Dynamics’ Active Reports
Viewer Control (included)

* Natively supports export to Excel worksheets. Excel not required.

614-895-3142 D Download Free
Fax 899-2943 DATA DYNAMICS Evaluation Copy
www.datadynamics.com from our website!

www.visualstudiomagazine.com

63

	Visual Studio Sept 03 VOL 13 NO 10 Page 1.pdf (p.1)
	Visual Studio Sept 03 VOL 13 NO 10 Page 2.pdf (p.2)
	Visual Studio Sept 03 VOL 13 NO 10 Page 3.pdf (p.3)
	Visual Studio Sept 03 VOL 13 NO 10 Page 4.pdf (p.4)

